Determination rates of antibiotic resistance, inducible beta-lactamase, and metallo beta-lactamase ratios in Pseudomonas aeruginosa isolates in a university hospital in Turkey

Main Article Content

Mehmet Bayraktar
Hadice Ozcinar
Bashar Mohammed Salih Ibrahim
Ali Ozturk

Abstract

Objective: This study aimed to determine the antibiotic resistance, inducible beta-lactamase (IBL), and Metallo beta-lactamase (MBL) rates in P. aeruginosa isolates.


Material and Methods: In our study, 100 P. aeruginosa isolates obtained from various clinical samples were used. Antibiotic susceptibility was performed by using the Kirby-Bauer disk diffusion method. Carbapenem resistance to imipenem and meropenem was verified by the E test. The disk induction method was used to determine the IBL production while the Modified Hodge test, MBL E test, and combined imipenem/ EDTA disk were used to determine the production of MBL.


Results: According to the results of antibiotic susceptibility tests, 58% of P. aeruginosa isolates were susceptible to all antipseudomonal drugs, while resistance rates to other drugs were as follows; ceftazidime 7%, cefoperazone sulbactam 8%, cefepime 13%, piperacillin 14%, piperacillin-tazobactam 12%, imipenem 9%, meropenem 11%, aztreonam 8%, amikacin 8%, gentamicin 13%, tobramycin 12%, netilmicin 19%, There was a 10% resistance to ciprofloxacin. 8% of the isolates were resistant to at least three drugs, of which two isolates were positive for MBL enzyme production. IBL production was detected in 86% of the isolates with the disk induction method.


Conclusion: The results we obtained in our study are consistent with other researchers globally and in Turkey. It was concluded that there is a need for well-standardized phenotypic tests with defined evaluation criteria and further studies to verify these tests genotypically.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bayraktar, M. ., Ozcinar, H. ., Ibrahim, B. M. S. ., & Ozturk, A. . (2022). Determination rates of antibiotic resistance, inducible beta-lactamase, and metallo beta-lactamase ratios in Pseudomonas aeruginosa isolates in a university hospital in Turkey. Medical Science and Discovery, 8(4), 247–253. https://doi.org/10.36472/msd.v8i4.525 (Original work published April 19, 2021)
Section
Research Article
Received 2021-04-01
Accepted 2021-04-15
Published 2022-07-01

References

Pier GB, Ramphal R. (2005). Pseudomonas aeruginosa. In: Mandell G, Bennett J, Dolin R, editors. Principles and Practice of Infectious Diseases. 6th ed. Elsevier Inc: Philadelphia, USA,p.2587-615.

Sırıken B, Öz V. Pseudomonas aeruginosa: characteristics and quorum sensing mechanism. Journal of Food and Feed Science-Technology. 2017;18: 42-52.

Scott-Thomas AJ, Syhre M, Pettemore PK, Epton M, Laing R, Pearson J. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. 2010;10 (1):56-66.

Eskandari S, Etemadifar Z. Isolation and characterization of melanin-producing Pseudomonas stutzeri strain UIS2 in the presence of l-tyrosine and survey of biological properties of its melanin. Iran J Med Microbiol. 2020;14(1): 70-83.

Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005; 171(11): 1209-23.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Bio technol Adv. 2019; 37(1): 177-192.

Sader HS, Castanheira M, Duncan LR, Flamm LK. Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States medical centers stratified by infection type: Results from the international network for optimal resistance monitoring (INFORM) surveillance program, 2015-2016. Diagn Microbiol Infect Dis. 2018; 92 (1): 69-74.

Altunay E, Akkan KE, Nilüfer ÖD, Erdem G.A ntimicrobial resistance of Pseudomonas aeruginosa isolates which were obtained from various clinical samples. ACMJ. 2019; 1(3): 63-67.

Silva Ribeiro AC, Lonardoni Crozatti MT, Silva AA, Macedo RS, Oliveira Machado AM, et al. Pseudomonas aeruginosa in the ICU: prevalence, resistance profile, and antimicrobial consumption. Rev Soc Bras Med Trop. 2020; 53(1): e20180498.

Fazeli H, Akbari R, Moghim S, Narimani T. Pseudomonas aeruginosa infections in patients, hospital means, and personnel's specimens. J Res Med Sci, 2012; 17: 332-337.

Clinical Laboratory Standard Institute. CLSI (2017). Performance standards for antimicrobial disk susceptibility test. 27th informational supplement, CLSI document M100-S15. Wayne, PA. USA.

Turlej-Rogacka AT, Xavier BB, Janssens L, Lammens C, Zarkotou O, Pournaras S, et al. Evaluation of colistin stability in agar and comparison of four methods for MIC testing of colistin. Eur J Clin Microbiol Infect Dis. 2018; 37 (2): 345–53.

Şen P, Yula E, Demirdal T, Kaya S, Nemli SA, Demirci M, et al. The resistance rates of extended and induced beta-lactamase-producing bacteria isolated from respiratory tract. Ortadogu Medical Journal. 2017;9(4): 170-76.

Guzel M, Afsar Y, Akdogan D, Moncheva P, Hristova P, Erdem G, et al. Evaluation of metallo-beta-lactamase production in multiple antibiotic-resistant Pseudomonas spp. and Acinetobacter baumannii strains. Biotechnology and Biotechnological Equipment. 2018; 32(5):1-6.

Alkhudhairy MK. and Shammari M.M. Prevalence of metallo-β-lactamase–producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New Microbes New Infect. 2020; 35:100661.

Lee K, Lim YS, Yong D, Yum JH, Chong Y, et al. Evaluation of the Hodge test and the imipenem-EDTA double-disk-synergy test for differentiating metallo-beta-lactamase producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003; 41(10): 4623-29.

Ranjan SH, Banashankari GS, Sreenivasa Babu PR. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: A prospective study. Medical Journal of Dr. D.Y. Patil University. 2015; 8(5): 599-605.

Lucena A, Libera M, Costa D, Silva Nogueira K, Gales AC, Raboni SM. Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Enferm Infecc Microbiol Clin. 2014; 32(10):625-30.

Aboushleib HM, Omar HM, Abozahra R, Elsheredy A, Baraka K. Correlation of quorum sensing and virulence factors in Pseudomonas aeruginosa isolates in Egypt. J Infect Dev Ctries. 2015; 9(10):1091-99.

Askoura M, Mottawea W, Abujamel T, Taher I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med. 2011;13(6):1-8.

Contreras GR. Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections? Frontiers in Microbiology. 2016; 7: 248.

Oliver A, Mulet X, Causapé CL, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones.Drug Resist Updat. 2015;21: 41-59.

Uğur M, Genç S. Three year Resistance Profile of Acinetobacter baumannii and Pseudomonas aeruginosa strains isolated from intensive care units. J Turk SocIntens Care. 2018;17 (3): 94103.

Şafak B, Kılınç O, Tunç N, Topçu B. Pseudomonas aeruginosa antimicrobial susceptibility results at a state hospital in Turkey (2010-2016). ANKEM Derg. 2018;32(1): 31-36.

Adabi M, Taher MT, Afshar M, Fathizadeh S, Minaeian Z, Maragheh NM, et al. Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosaby using an efflux pump inhibitor. Infect Chemother. 2015; vol. 47(2): 98-104.

Breidenstein EBM, Fuente-Núñez C, Hancock REW. Pseudomonas aeruginosa: all roads lead to resistance. Trends in microbial 2011;19(8): 419-426.

Munita JM. and Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr. 2016; l: 41-24.

Er H, Altindiş M, Asık G, Demir C. Molecular epidemiology of beta-lactamases in ceftazidime-resistant Pseudomonas aeruginosa isolates. Mikrobi Bul. 2015; 49:156-65.

Demirdal T, Şen P, Yula E, Kaya S, et al. Assessment of Pseudomonas aeruginosa resistance profiles in intensive care units: Five-year outcomes. Ortadogu Medical Journal. 2017; 9 (3): 108-112.

Roldán LR, Bellés A, Bueno J, Gutiérrez JMA, Rojo-Bezares B, Torres C, et al. Pseudomonas aeruginosa isolates from Spanish children: occurrence in faecal samples, antimicrobial resistance, virulence, and molecular typing. Biomed. Res. Int. 2018; 1-8.

Rossolini GM, Luzzaro F, Migliavacca R, Mugnaioli C, Pini B, De Luca F, et al. First countrywide survey of metallobetalactamases in gram-negative pathogens in Italy. Antimicrob Agents Chemother. 2008; 52(11): 4023-4029.

Demirdağ K, Cabalak M, Özgüler M. The frequency of metallo-beta-lactamase production in Pseudomonas spp. strains İsolated from ıntensive care unit. ANKEM Derg. 2011; 25(3): 150-156.

Berktaş M, Guducuoglu H, Cıkman A, Parlak M, Yaman G. Inducible beta-lactamase activity of nosocomial Pseudomonas aeruginosa strains. Firat Med J. 2011;16(3): 125-28.